Using eigenvalues as variance priors in the prediction of genomic breeding values by principal component analysis
نویسندگان
چکیده
منابع مشابه
Compression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملanalysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملcomparison between bayesc and gblup in estimating genomic breeding values under different qtl variance distributions
a genome consisted of 1000 biallelic single nucleotide polymorphisems (snps) on one chromosome with 100 cm length was simulated and different qtl variance distributions (uniform, normal and gamma) and various numbers of qtl (5, 10 and 20) were considered as simulation assumptions and consecutively 9 various traits were generated. the comparison between gebvs obtained from bayesc and gblup showe...
متن کاملFast noise variance estimation by principal component analysis
Noise variance estimation is required in many image denoising, compression, and segmentation applications. In this work, we propose a fast noise variance estimation algorithm based on principal component analysis of image blocks. First, we rearrange image blocks into vectors and compute the covariance matrix of these vectors. Then, we use Bartlett’s test in order to select the covariance matrix...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Dairy Science
سال: 2010
ISSN: 0022-0302
DOI: 10.3168/jds.2009-3029